
blisp - A Simple LISP Interpreter
Brian Hoffpauir

United States
bhoffpauirmail@gmail.com

Abstract—This report introduces blisp, a Scheme-like LISP
programming language and interpreter written in Java. The
blisp language implements core features found in LISP dialects
such as atoms, lists, symbols, and lambdas. It supports both
an interactive REPL environment and script execution modes,
enabling users to evaluate expressions and build reusable code.
While blisp is inspired by Scheme, it offers its own design
choices, including a flexible API for embedded scripting. This
document details the design and implementation of blisp, along
with examples of usage and core language features like special
forms and macros. Section VIII provides a complete reference
for the blisp language.

Index Terms—LISP, interpreters, languages, design, Java,
APIs, libraries.

I. INTRODUCTION

Fig. 1. blisp logo.

(DEFINE (HELLO X)
(PRINTLN "Hello, " X))

(HELLO "blisp")

blisp is a simple, Scheme-like LISP programming lan-
guage library and interpreter written in Java. blisp attempts
to implement the features that are fundamental to all LISP
dialects such as atoms, lists, special forms, and lambdas. The
language not adhere to any standard put forth by other LISP
dialects, but it does attempt to closely resemble Scheme in both
appearance and behavior. The language library implements a
flexible API that can evaluate expressions or even support
embedded scripting. The interpreter program provides a means
to execute blisp programs or present the user with an
interactive REPL.

TABLE I
LISP PROGAMMING LANGUAGES

Language Description

Common Lisp Many features, support for multiple paradigms,
multiple fast implementations.

Scheme Minimalist functional LISP with focus on
DSLs.

Racket Multi-paradigm, Scheme-like LISP with an
academic focus.

Clojure Functional LISP on the JVM with Java interop
support.

Table I lists several of the most common LISP programming
languages and their features. blisp aims to provide the LISP
ecosystem with a LISP dialect suitable for standalone scripts
and easily embedding into Java applications.

II. DESIGN

blisp inherits many of the design features found in
other dialects of LISP, most notably Scheme. The following
subsections describe the features of blisp and how they form
the language.

A. Atoms

In blisp, atoms are the fundmental units of a program.
Atoms represent the atomic/scalar values that can be repre-
sented in the language. Examples of atoms in blisp include:
numbers, strings, booleans, characters, and symbols. Atoms
are immutable after creation, and thus their values will not
change during the course of a program. However, what can
change is the atomic value bound to a particular symbol in
the environment. This is discussed further in Section II-B.

B. Symbols

Symbols are the identifiers to which values may be bound.
When the blisp interpreter encounters a token that represents
a symbol, it looks up the value of this symbol within the cur-
rent execution environment. blisp supports symbol binding
in global and lexical environments. The define and let
constructs are used to bind symbols to values in the global and
lexical environments respectively. Symbols in blisp are case-
insensitive. The special symbol, nil, can be used to represent
the absence of a value. The nil symbol is equivalent to the
empty list ().

In blisp, scopes are known as the environment. The
global environment persists throughout execution and initially
contains the default operations builtin to the language. When
special forms such as lambda or let are used, lexical scopes
are created for the parameters or let bindings respectively. See
Section II-D and Section II-E for more information on lambdas
and special forms respectively.

C. Lists

One data structure which is an inherent characteristic of
LISP dialects is the list. blisp is no different in that all code
structures are held internally in lists that resemble trees with
other expressions as branches. In blisp, any symbol placed
at the beginning of a list is looked up in the environment
and used to invoke the lambda or special form bound to that



symbol with the arguments being the remainder of the list.
blisp differs from some LISP dialects in that there is no
cons pair construct. As such, there are also no supported
car (access left element in a cons pair) and cdr (access
right element) operations.

D. Lambdas

In blisp, lambdas are anonymous functions that offer fun-
damentals support for code reuse. Lambdas take the following
form:
(LAMBDA (param1 ... paramn) expr1 ...

exprn)

where the last expression in the lambda body, exprn, it
the value returned by invoking a lambda. The λ (Unicode
character U+03BB) can be used in place of the lambda
symbol. Lambdas can be bound to symbols, however it is
more common to use the define construct. When lambdas
are bound to symbols in blisp, they are then known as
procedures. Lambdas are treated as first-class values, and can
be bound to symbols or passed anonymously as arguments to
other procedures. The syntax for invoking a procedure is as
follows:
(procsym arg1 ... argn)

E. Special Forms and Macros

In blisp, special forms are constructs that resemble lamb-
das or procedures, but do not conform to the traditional evalu-
ation rules. In fact, the syntax used to create lambdas is itself
a special form. What makes the lambda construct a special
form is how its arguments are evaluated. Any procedure-like
construct that does not evaluate its arguments in the typical
greatest-depth-first and left-to-right fashion is a special form.
Special forms such as if are implemented within the language
library. Another similar feature in blisp are macros. The sole
distinction between macros and special forms are that macros
are not implemented within the language library, but with the
defmacro construct instead.

III. IMPLEMENTATION

blisp is implemented as a language API library and an
interpreter program that utilizes the library. The language API
provides a interface the user can use to tokenize, parse, and
evaluate expressions using the rules of the language. The
choice language for the implementation of blisp is Java.

A. Language API Library

The blisp language API uses the object oriented paradigm
as well as generic programming facilities. The API is com-
posed of four main components: the tokenizer, parser, environ-
ment, and evaluator. Any functioning embedded application of
blisp will use these four components.

1) The Tokenizer: The tokenizer component translates a
input string of source code into a list of tokens. This list
of tokens is then subsequently given as input to the parser.
The tokenizer ignores white-space and skips over single-line
comments (beginning with a ; character and continuing until
the end of the line). The syntax of the individual tokens is
preserved in the tokenization stage. For example, tokenized
strings are quoted and characters maintain the \X syntax.

Algorithm 1 Tokenizer Algorithm
Require: Input string input
Ensure: List of tokens tokens

1: Initialize currentIndex ← 0
2: Create empty list tokens
3: while currentIndex < length(input) do
4: ch ← input[currentIndex]
5: if ch is whitespace then
6: currentIndex ← currentIndex + 1
7: Continue
8: end if
9: if ch is ’;’ then

10: Skip characters until end of line
11: Continue
12: end if
13: if ch is ’’́ then
14: Add ’’́ to tokens
15: currentIndex ← currentIndex + 1
16: Continue
17: end if
18: if ch is ’(’ or ’)’ then
19: Add ch to tokens
20: currentIndex ← currentIndex + 1
21: Continue
22: end if
23: if ch is ’"’ then
24: Add result of readString() to tokens
25: Continue
26: end if
27: if ch is ’

’ then
28: Add result of readCharacter() to tokens
29: Continue
30: end if
31: if ch is a letter or symbol start then
32: Add result of readSymbolOrNumber() to

tokens
33: Continue
34: end if
35: Throw UnknownTokenException if ch is invalid
36: end while
37: return tokens

2) The Parser: The parser component creates tree code
structures from the output produced by the tokenization stage.
In blisp, all non-atomic code expressions are represented
internally as lists of objects, which may also be lists. These



trees of expressions can be nested to an arbitrary depth, or as
much as the JVM’s stack space permits (the implementation
is recursive). The parser steps through the output of the tok-
enization stage and creates internal representations of lists and
atomic values as they are encountered. Tokens representing
atoms are converted from the language syntax into values that
can be used for language operations.

Algorithm 2 Parser Algorithm
1: Function parse(tokens)
2: if tokens is empty then
3: Throw IllegalArgumentException
4: end if
5: return parseExpression()

1: Function parseExpression()
2: if no more tokens then
3: Throw NoSuchElementException
4: end if
5: token ← next token
6: if token is "’" then
7: return parseExpression()
8: else if token is "(" then
9: list ← empty list

10: while token is not ")" do
11: list.add(parseExpression())
12: end while
13: return ListAtom(list)
14: else if token is ")" then
15: Throw UnbalancedParenthesisException
16: else
17: return parseAtom(token)
18: end if

1: Function parseAtom(token)
2: if token starts with "
" then

3: return CharacterAtom(token)
4: end if
5: if token starts with ""̈ then
6: return StringAtom(token)
7: end if
8: if token is a valid symbol then
9: return SymbolAtom(token)

10: end if
11: if token is a valid number then
12: return NumberAtom(token)
13: end if
14: Throw LispRuntimeException("Invalid

token")

3) The Environment: In blisp, scope is referred to as the
environment. The environment component is where symbols
are bound to values. The builtin language procedures are all
placed in the global environment and defined in the language
API. The symbols used by special forms are reserved and
cannot be rebound, unlike the language procedures. The let

special form is used to create local environments (lexical
scopes).

4) The Evaluator: The evaulator component takes the ex-
pressions produced at the parsing stage and evaluates them by
resolving symbols within a given environment. When given
certain atomic values such as characters, string, and numbers,
the interpreter simply evaluates those atoms to themselves.
Symbols are evaluated by resolving their value binding in the
environment. Special forms are also processed in the evaluator.

Fig. 2. The above tree represents the evaluation of the expression: (* (- 10
5) (+ 2 2)).

Upon encountering a list, the evaluator checks to see if
the first element of the list is a symbol that corresponds to
a special form or is bound to procedure in the environment. If
the symbol represents a special form, then the unevaluated
arguments are passed to its implementation. Special forms
typically exert their own control over evaluation. If the symbol
is bound to a procedure, then the arguments are evaluated
from left to right and applied to the procedure call. Figure
2 presents how the expression (* (- 10 5) (+ 2 2))
is evaluated. This expression is equivalent to the following
arithmetic: (10− 5) ∗ (2 + 2).

The evaluator makes heavy use of generic programming and
pattern matching internally.

B. Standalone Interpreter

The standalone interpreter program uses the API library
to provide a REPL style interface to the user. In REPL
mode blisp prompts the user for an expression that it will
subsequently evaluate. Upon encountering an error a dedicated
exception will be thrown and a message will be displayed,
otherwise the correct result of evaluating the expression will
be shown. The interpreter also supports a script file execution
mode. In this mode, the interpreter steps through each expres-
sion in a source code file and evaluates them in order from
top to bottom. Evaluation stops upon reaching the end of the
script file. See Figure 3 for an illustration.



Algorithm 3 blisp Interpreter Execution
Require: Command-line arguments args
Ensure: Execution of the interpreter in REPL or script mode

1: Initialize options, mode, showTokens,
showParser, showStackTrace,
extendedPrint

2: parseArguments(args)
3: if mode is REPL then
4: displayREPLInfo()
5: end if
6: Create global environment env
7: initializeBuiltIns(env)
8: while running do
9: if mode is REPL then

10: displayPrompt()
11: end if
12: line ← readInput()
13: if line is EOF then
14: if mode is SCRIPT_AND_REPL then
15: switchToREPLMode()
16: else
17: Break
18: end if
19: end if
20: Append line to expression
21: if expression has unmatched parentheses then
22: Continue
23: end if
24: tokens ← Tokenizer.tokenize(expression)
25: if showTokens then
26: displayTokens(tokens)
27: end if
28: parsedExpr ← Parser.parse(tokens)
29: if showParser then
30: displayParsedExpression(parsedExpr)
31: end if
32: result ← Evaluator.evaluate(parsedExpr, env)
33: if mode is REPL then
34: print(result)
35: end if
36: Reset expression
37: end while
38: Return exit code

Below is an illustration of a typical REPL session with the
blisp interpreter:

blisp v1.0 on Linux (amd64) version 6.6.17
Type "help" or "license" for more information.
Press Ctrl+D or type "(exit)" to exit this

REPL.
>>> (+ 2 2)
4.0
>>> (DEFINE A (+ 2 2))
4.0
>>> (* A 2)
8.0
>>> ; Declare and immediately invoke a lambda:

Fig. 3. The following flowchart represents the program flow of the interpreter
(programs using blisp for embedded scripting will behave similarly).

>>> ((LAMBDA (X Y) (+ X Y)) A 2)
6.0

The user is first presented with interpreter version infor-
mation and the prompt. In this session, the first expression
evaluate produces a value of 2. The second expression binds
the result of evaluating the expression (+ 2 2). The third ex-
pression multiplies the value bound to a by 2. The third input
entered by the user is a single line comment. In blisp, any
characters following a semi-colon are ignored by the parser.
Finally, the fourth expression provides a lambda definition as
the first argument in a list, and immediately invokes it with the
arguments a and 2. Recall from Section II-C, that the symbol
at the start of a list is evaluated and the remaining elements
are invoked as arguments to the procedure or special form
referred to by the symbol.

To use the interpreter in the script execution mode the
user must pass the path of the script file as a command-
line argument to the interpreter program. For example, the
following invocation of the interpreter program passes the path
to the script file test.blisp1:

java -jar target/blisp-1.0-SNAPSHOT.jar
scripts/test.blisp

1.blisp is the choice extension for blisp source code files



The interpreter can also open a REPL after a script’s
execution with the -i | --interactive flag, thus the
environment created by the script will still be accessible.

java -jar target/blisp-1.0-SNAPSHOT.jar
scripts/test.blisp --interactive

Running the above command will have the following be-
havior:

4.0
20000.0
5.0
10.0 20.0 test true
>>> (ADD 2 2) ; REPL session starts here

(symbol bindings from script still
available)

4.0
>>> (SUB 10 5)
5.0
>>> (EXIT) ; Leave REPL session

The interpreter also supports a simple REPL mode with use
of the -i | --interactive flag:

java -jar target/blisp-1.0-SNAPSHOT.jar -i

IV. USING THE LANGUAGE

Those familiar with other LISP dialects will be at home
when using blisp. While you have already seen some usage
of the blisp interpreter in Section III-B, this section presents
more involved examples. See Section VIII for a comprehensive
language reference.

A. Example I - Core Features

This example aims to showcase most of blisp’s impor-
tant features. The example_01.blisp script file for this
example is located in the scripts/ directory at the root of
the repository. A similar convention will be used for all other
examples in this section.

; Atoms
(PRINTLN 10 100.01 101e4) ; Numbers
(PRINTLN "this is a string" "t") ; Strings
(PRINTLN \A \B \C) ; Characters
(PRINTLN TRUE) ; This is a boolean
(PRINTLN NIL) ; nil is a special symbol

; Lists
(PRINTLN (LIST 1 2 3))

; Symbol bindings
(DEFINE A 100) ; Bind 100 to the symbol a
(PRINTLN A)

; Lambdas
(DEFINE ADD (LAMBDA (A B) (+ A B))) ; Create

and bind lambda to symbol add
(DEFINE SUB (LAMBDA (A B) (- A B))) ; Can use

unicode to create a lambda

; Procedures
; Bind MUL to procedure with arguments A & B

to the body expr
(DEFINE (MUL A B)

(* A B))

(PRINTLN (MUL 4 4)) ; Calls mul with two
arguments, prints 16

; Bulitin procedures
(PRINTLN (+ 2 2 4 9 10 22)) ; Arithmetic

operations

(PRINTLN (MOD 242 5)) ; Math procedures

(PRINTLN (LIST? (LIST 1 2 3))) ; Atom type
predicates

; Special forms
(IF (= 2 2)
(PRINTLN "True")
(PRINTLN "False"))

; Prints "test" and returns 10
(PRINTLN (BEGIN (PRINTLN "test")

10))

B. Example II - Procedures & Recusion

This example showcases how recursion works in blisp.
This example is from example_02.blisp.

; Recursion (nth factorial)
(DEFINE (FACT N)

(IF (= N 1)
1
(* N (RECUR (- N 1)))))

; Procedure to display the nth factorial
(DEFINE (SHOW-FACT N)

(PRINTF "fact(%d) = %d\n" N (FACT N)))

(SHOW-FACT 1)
(SHOW-FACT 2)
(SHOW-FACT 3)
(SHOW-FACT 4)
(SHOW-FACT 5)

; Recursion (nth number in the Fibonacci
sequence)

(DEFINE (FIB N)
(IF (< N 2)
N
(+ (RECUR (- N 1)) (RECUR (- N 2)))))

(PRINTF "fib(0) = %d\n" (FIB 0))
(PRINTF "fib(1) = %d\n" (FIB 1))
(PRINTF "fib(2) = %.0f\n" (FIB 2))
(PRINTF "fib(3) = %.0f\n" (FIB 3))
(PRINTF "fib(4) = %.0f\n" (FIB 4))
(PRINTF "fib(5) = %.0f\n" (FIB 5))

C. Example III - List Processing

This example showcases the list processing features of
blisp. This example is from example_03.blisp. The
list processing procedures MAP, FILTER, and REDUCE utilize
the first-class properties of lambdas in blisp. For example,
the first argument of the MAP procedure is a lambda that takes
an element from the list at a time. The return value of this
lambda is the transformed element in the new list created



by the mapping operation. FILTER takes a predicate lambda
which takes an element argument and returns a boolean value
to indicate whether or not the element should be in the list
created by the filter operation. REDUCE performs a left fold
operation with the second argument as the initial value. The
first argument is the reduction lambda which takes the accu-
mulator variable and current iteration element as arguments.
It returns the new value of the accumulation variable.

(DEFINE LST1 (LIST 1 2 3 4 5))
(PRINTLN "List 1: " LST1)

; List transformations using the map procedure
(PRINTLN "Mapping over List 1: " (MAP (LAMBDA

(N) (+ N 2)) LST1))

; List transformations using the filter
procedure

(PRINTLN "Filtering List 1: " (FILTER (LAMBDA
(N) (> N 2)) LST1))

; Accumulating a result using the reduce
procedure (sum)

(PRINTLN "Reducing List 1: " (REDUCE + 0
LST1))

; Summing the even numbers up to 10
(REDUCE + 0 (RANGE 0 (INC 10) 2))

V. CONCLUSION

Developmening a Scheme-like LISP dialect like blisp
demonstrates the feasibility of building a flexible, embedded
scripting language in Java. blisp supports the core features
of Scheme, such as atoms, symbols, lists, lambdas, and special
forms. The interpreter supports both REPL and script execu-
tion modes, providing users with an environment to experi-
ment with and evaluate LISP-like code. The language library
provides a means of integration into new or existing Java
applications, offering users the ability to evaluate expressions
and build reusable embedded code. While blisp stays true
to key concepts found in LISP dialects, it also introduces
some custom design choices that distinguish it from other
implementations, making it a practical tool for learning and
embedding LISP-like functionality in Java applications.

VI. FUTURE WORK

Although blisp has achieved many of its initial goals,
there are several areas for further improvement and develop-
ment. First, adding support for more advanced data structures,
such as vectors or hash maps, would enhance its usability.
Maps are crucial and foundational in LISP dialects such
as Clojure. Additionally, implementing proper TCO would
improve performance for recursive functions, aligning blisp
closer to Scheme standards. Tail recursion is property of
procedures which execute an interative process in constant
space, even if they have a recursive implementation [1]. While
the methods of implementation are somewhat limited due to
the JVM’s own lack of TCO, a solution might be able to use
imperative loops under the hood. Another potential area of

Fig. 4. Future work areas for blisp.

improvement is extending the macro system to allow for more
complex code expansion and optimizations. Furthermore, ex-
panding the library to include more built-in procedures, as well
as incorporating features like concurrency or multi-threading,
would make blisp suitable for larger projects with greater
performance and functionality demands. A module/package
system would help reduce name collisions and increase the
viability of using blisp in large embedded projects. Finally,
creating a more robust error handling and debugging system
would assist users in developing more complex scripts and
embedded applications.

VII. ACRONYMS

This section describes any acronyms that were used in this
document.

API Application Programming Interface
DSL Domain-Specific Language
JAR Java Archive
JVM Java Virtual Machine
LISP LISt Processing
REPL Read Evaluate Print Loop
TCO Tail-Call Optimiziation

REFERENCES

[1] H. Abelson and Gerald Jay Sussman, “Structure and Interpretation of
Computer Programs, second edition.” MIT Press, 1996.

VIII. LANGUAGE REFERENCE

This section presents a list of all the features and operations
of the blisp language and a syntactical/behavioral descrip-
tion for each.



A. Atoms

An atom in blisp is a simple, indivisible element. These
can be numbers, booleans, or strings.

Syntax: Atoms are directly represented as themselves.
Description: Atoms in blisp include:
• Symbols: Identifiers to which values can be bound.
• Numbers: Can be integers or floating-point numbers.
• Booleans: Represent truth values, with true for true and
false for false.

• Strings: A sequence of characters enclosed in double
quotes.

• Characters: A single character preceeded by a backslash.
Numbers will be given a distinct type, integer or double,

based on the literal you use to declare them. In arithmetic
operations, these underlying types will be promoted to doubles
as necessary.

Examples:
sym ; A symbol
42 ; A number (integer)
42.99 ; A number (floating-point)
42e+9 ; A number (scientific notation)
true ; A boolean true
false ; A boolean false
"hello" ; A string
\\A ; A character
\\0x41 ; A character (Unicode A)

B. Symbols

Symbols in blisp are identifiers that refer to values or
procedures.

Syntax: symbol
Description: Symbols are used to name variables or proce-

dures in the environment. They can consist of letters, numbers,
and certain special characters, but cannot start with a number.

Examples:
x ; A symbol referring to a variable
my-proc ; A symbol referring to a procedure
+ ; A symbol for the addition operator

C. Lists

Lists are one of the core data structures in blisp. They
consist of a sequence of elements enclosed in parentheses.

Syntax: (element1 element2 ... elementn)
Description: A list can contain atoms, symbols, or other

lists (making it a recursive structure). The first element in a
list typically represents a function or special form, and the
remaining elements are treated as arguments.

Examples:
(1 2 3) ; A list of numbers
(+ 1 2 3) ; A list

representing a procedure call
(define (square x) (* x x)) ; A list

defining a procedure

Operations:
• first: Returns the first element of a list.

• rest: Return the remainder of a list.
• last: Returns the last element of a list.
• nth: Returns the nth element in a list.
• cons: Constructs a new list by prepending an element

to an existing list.
• count: Returns the number of elements in a list.

Examples:

(first ’(1 2 3)) ; Returns 1
(rest ’(1 2 3)) ; Returns (2 3)
(last ’(1 2 3)) ; Returns 3
(nth 1 ’(1 2 3)) ; Returns 2
(cons 0 ’(1 2 3)) ; Returns (0 1 2 3)
(count (list 1 2 3)) ; Returns 3

D. Special Forms

Special forms are language constructs or control structures
that don’t follow the normal evaluation rules.

define
Syntax 1: (define sym value)
Syntax 2: (define (procsym param1 ... paramn)
exprs)
Description: Binds value to the symbol sym in the current
environment (Syntax 1). Bind a procedure to the symbol
procsym that has parameters param1 through paramn with
exprs as the procedure body (Syntax 2).
Example:

(define a 2) ; Binds the value 2 to the
symbol a

(define (add x y) (+ x y)) ; Create a
procedure with 2 args bounds to the
symbol add

lambda
Syntax: (lambda (param1 ... param2) expr1 ...
exprn)
Invocation Syntax: ((lambda (params) exprs) arg1
... argn)
Description: Create a lambda with parameters param1

through param2.
Example:

(lambda (a b) (+ a b)) ; Returns the
lambda

((lambda (a b) (+ a b)) 2 2) ; Invoke the
lambda with arguments 2 & 2

if
Syntax: (if cond expr1 expr2)
Description: Evaluates cond, if cond is true expr1 is evaluated
and returned, otherwise expr2 is evaluated and returned.
Example:

(if true 10 20) ; Returns 10
(if false 10 20) ; Returns 20
(if (= 2 2)

(begin (println "true")
10)

false) ; Prints "true", returns 10



begin
Syntax: (begin expr1 ... exprn)
Description: Evaluates expr1 through exprn in order, returns
exprn.
Example:

(begin (println "test") 2 3) ; Prints
"test", returns 3

quote
Syntax: (quote expr)
Description: Return expr as an unevaluated list or atom.
Example:

(quote (list 1 2 3)) ; Returns (list 1 2
3)

(quote 2) ; Returns 2

E. Procedures

Procedures are named functions. All procedures have de-
fined parameters and can return any atomic value. All proce-
dures can refer to themselves using the recur symbol. This
symbol permits procedures to call themselves recursively.

Naming Conventions:
• proc-name: Typical procedure name using hypen-

snake-case.
• predicate?: Use with procedures that return a

Boolean value.
• make-foo: Use for procedures that create a structured

value.
• foo->bar: Use for procedures that convert values (Ex:

number to string).

inc
Syntax: (inc n)
Description: Increase the value of n by one and return.
Example:

(inc 5) ; Returns 6

dec
Syntax: (dec n)
Description: Decrease the value of n by one and return.
Example:

(dec 5) ; Returns 4

+
Syntax: (+ arg1 ... argn)
Description: Adds the provided arguments. Each argument
must evaluate to a number. The result is the sum of all the
arguments.
Example:

(+ 1 2 3) ; Returns 6
-
Syntax: (- arg1 ... argn)
Description: Subtracts the provided arguments. Each argu-
ment must evaluate to a number. The result is the difference
of all the arguments.
Example:

(- 8 4 2) ; Returns 2

*
Syntax: (* arg1 ... argn)
Description: Multiply the provided arguments. Each argument
must evaluate to a number. The result is the product of all the
arguments.
Example:

(* 2 2 2) ; Returns 8

/
Syntax: (/ arg1 ... argn)
Description: Divide the provided arguments. Each argument
must evaluate to a number. The result is the combined quotient
of all the arguments.
Example:

(/ 4 2) ; Returns 2

mod
Syntax: (mod numer denom)
Description: Return the remainder of dividing numer by
denom. Numbers are floored to integers.
Example:

(mod 4 2) ; Returns 0

list
Syntax: (list arg1 ... argn)
Description: Create a list formed from arg1 through argn.
Example:

(list 1 2 3 4 5) ; Returns (1 2 3 4 5)

first
Syntax: (first lst)
Description: Return the first element in the list lst.
Example:

(first (list 1 2 3 4 5)) ; Returns 1

rest
Syntax: (rest lst)
Description: Return the tail end of the list lst.
Example:

(rest (list 1 2 3 4 5)) ; Returns (2 3 4
5)

last
Syntax: (last lst)
Description: Return the last element in the list lst.
Example:

(last (list 1 2 3 4 5)) ; Returns 5

nth
Syntax: (nth lst n)
Description: Returns the nth element in the list lst (zero-
based).
Example:

(nth (list 1 2 3 4 5) 4) ; Returns 5



count
Syntax: (count lst)
Description: Returns the number of elements in a list (single-
depth).
Example:

(count (list 1 2 3 4 5)) ; Returns 5

map
Syntax: (map proc lst)
Description: Return the elements in lst after applying the
proc procedure or function to each element.
proc Description: (proc elem) =⇒ Any value
Example:

(map inc (list 1 2 3 4 5)) ; Returns (2 3
4 5 6)

filter
Syntax: (filter pred lst)
Description: Return a list of elements in lst that satisfy the
predicate pred.
pred Description: (pred elem) =⇒ true/false
Example:

(filter number? (list 1 "test" \A 2)) ;
Returns (1 2)

reduce
Syntax: (reduce proc initial lst)
Description: Return the result of successively applying the
proc procedure to each element of lst. The initial argument
will set the first value used by the prev variable in the proc
procedure.
proc Description: (proc prev next) =⇒ result
Example:

(reduce + 0 (list 1 2 3 4 5)) ; Returns 15

range
Syntax 1: (range end)
Syntax 2: (range start end)
Syntax 3: (range start end step)
Description: 1 returns the list of numbers starting at 0 upto
end. 2 returns the list of numbers from start upto end. 3
is indentical to 2 except that step defines the rate at which
numbers are added to the range.
Example:

(range 3) ; Returns (0 1 2)
(range 0 3) ; Returns (0 1 2)
(range 0 3 1) ; Returns (0 1 2)

=
Syntax: (= arg1 ... argn)
Description: Return true if all arguments are equal, false
otherwise.
Example:

(= 2 2 2 2 2) ; Returns true

not=
Syntax: (not= arg1 ... argn)
Description: Inverse of =.

<
Syntax: (< arg1 ... argn)
Description: Return true if all arguments are less than their
right neighbor, false otherwise.
Example:

(< 2 3 4 5) ; Returns true

>
Syntax: (> arg1 ... argn)
Description: Return true if all arguments are greater than
their right neighbor, false otherwise.
Example:

(> 5 4 3 2) ; Returns true

<=
Syntax: (<= arg1 ... argn)
Description: Return true if all arguments are less than or
equal to their right neighbor, false otherwise.
Example:

(<= 2 3 4 4) ; Returns true

>=
Syntax: (>= arg1 ... argn)
Description: Return true if all arguments are greater than
or equal to their right neighbor, false otherwise.
Example:

(>= 4 4 3 2) ; Returns true

symbol?
Syntax: (symbol? sym)
Description: Return true if sym is a symbol, false
otherwise.

number?
Syntax: (number? n)
Description: Return true if n is a number, false otherwise.

boolean?
Syntax: (boolean? b)
Description: Return true if b is a boolean, false otherwise.

string?
Syntax: (string? s)
Description: Return true if s is a string, false otherwise.

char?
Syntax: (char? ch)
Description: Return true if ch is a character, false other-
wise.

list?
Syntax: (list? lst)
Description: Return true if lst is a list, false otherwise.



print
Syntax: (print arg1 ... argn)
Description: Print each argument to stdout.
Example:

(print "hello" 99 true) ; Prints "hello
99 true"

sprintf
Syntax: (sprintf fmt arg1 ... argn)
Description: Format each arg1 through argn using fmt
as the format string. The format string syntax is directly
used by Java’s String.format(fmt, ...). Returns the
formatted string.
Format Specifiers Supported by Atom

• Number – %f for doubles or %d for integers
• Boolean – %b
• String – %s
• Character – %c
• Symbol – %s

Example:
(sprintf "%s %.2f %b" "test" 99.13 true)

; Prints "test 99.13 true"

printf
Syntax: (print fmt arg1 ... argn)
Description: Print each arg1 through argn to stdout using
fmt as the format string. sprintf is used in the implemen-
tation. Returns nil.
Example:

(printf "%s %.2f %b" "test" 99.13 true) ;
Prints "test 99.13 true"

println
Syntax: (println arg1 ... argn)
Description: Same as print, but with an added newline.

exit
Syntax: (exit [exitcode])
Description: Exit the program with the optionally specified
exitcode.


